PHP2517: Applied Multilevel Data Analysis

Homework 1

Antonella Basso

April 20, 2022

Data

The “cd4” dataset includes CD4 percentages for a set of young children with HIV who were measured several
times over a period of two years. The dataset also includes the ages of the children at each measurement.
The “cd4” dataset has information on the following variables:

e id: Child ID

e visit: Number of visit

e VDATE: Date of visit

o time: Time (in days) after the first visit
e CD4PCT: CD4 percentage

o visage: Age (in years) at each visit

e trt: Treatment group

¢ CD4CNT: CD4 count

o baseage: Age at baseline (first visit)

Question 1:

a. Exploratory Data Analysis (EDA): Explore your data and provide appropriate descriptive statistics
and plots for summarizing and presenting the information collected in this study. *Note: Some of the
variables included have similar information (e.g., CD4 counts and percentages, visit date, time, and
age). When this is the case, select just one of the relevant variables to include in the EDA.

b. Randomly select 10 children from the sample, and graph the outcome Y = CD4 percentage on the
square root scale, for each child as a function of time. What do you observe?

c. Each child’s data has a time course that can be summarized by a linear fit. Estimate these lines and
plot them for the same 10 children that you randomly selected from the sample.

d. Set up a model for the children’s slopes (for time) and intercepts as a function of the treatment and
age at baseline. Estimate this model using a two-step procedure:

1. Estimate the intercept and slope separately for each child.
2. Fit a model describing the between-child differences using the point estimates from the first step.

Solution
a. Exploratory Data Analysis (EDA)
Overview of Data:

e 1,055 total observations for 245 individuals

« 1 missing observation for CD4PCT (and CD4CNT)
e 95 missing observations for CD4CNT

e 126 individuals on treatment 1



119 individuals on treatment 2

individual ages range between 0.2-12.5 years

observations are taken no less than 1 and no more than 709 days after the first visit
each individual has between 1-7 observations

Descriptive Statistics:

Table 1: Descriptive Statistics of Primary Outcome by Treatment Group

Treatment Group Individuals Mean CD4 %  Variance CD4 %

1 126 22.714 190.640
2 119 25.192 164.846

Table 2: Descriptive Statistics of Primary Outcome by Observation Count

Observation Count Individuals Mean CD4 % Variance CD4 %

1 26 24.327 197.139
2 36 17.793 174.297
3 27 30.837 162.078
4 34 20.703 141.377
5 39 21.755 180.959
6 37 24.918 161.376
7 46 25.284 186.386

Plots:
Figure 1: Distribution of CD4 %
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Figure 2: CD4 Percentages by Treatment Group
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Figure 3: Mean CD4 Percentage by Age and Treatment Group
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Figure 4: CD4 Percentages by Observation Count
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Figure 5: Mean CD4 Percentage by Observation Count and Treatment Grou
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b. Individual Trajectories of CD4 % Over Time

Figure 6: Individual CD4 Percentages (Square Root Scale) Over Time
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The 10 sampled individual trajectories of CD4 percentages (on the square root scale), given by
Figure 6 above, suggest that individuals have wide ranging responses with respect to time. While
some individuals maintain a rather constant percentage of CD4, others (like those with ID’s of 26,
207, 221, and 251) show radically fluctuating CD4 percentage. Particualarly, such individuals, for
whom (generally) more observations were recorded and displayed somewhat higher or spiked CD4
percentages at earlier times (a few days after the first visit), showed relatively declining or more
stabilizing trends in CD4 percentage later on.

c. Individual (Linear) Trajectories of CD4 % Over Time

Figure 7: Estimated Individual Linear Trajectories of CD4 Percentage
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d. Describing between-child differences with respect to time (intercept and slope) as a function of treatment
and baseline age.

Model Estimation (two-step procedure):
1. Estimating the intercept and slope separately for each child.

for (i in id){
b0 <- coef (1lm(CD4PCT ~ time, data=cd4_group[which(cd4_group$id==i), 1)) [1]
bt <- coef (1lm(CD4PCT ~ time, data=cd4_group[which(cd4_group$id==i), 1)) [2]
}

Table 3: Individual Time Intercept and Slope Estimates

id  intercept slope_ time
1 24.7644 -0.0179
2 1.0090 -0.0090
3 29.8664 0.0060
4 29.6999 -0.0032
5 16.0000 NA
6 24.5128 0.0064
7 27.1212 0.0060
10 29.4754 0.0014
11 9.2843 -0.0160
12 17.7471 -0.0032
Note:

Only shown for first 10 individuals.

2. Fitting a model to describe between-child differences using point estimates from (1).
Variation between individual time intercepts:
In(bO ~ trt + baseage, data=cd4_ml)
Variation between individual time slopes:

Im(bt ~ trt + baseage, data=cd4_ml)

Table 4: Variation Between Individual Time (Intercept and Slope) Estimates

Intercept Slope
(Intercept)  28.02834 -0.00927
trt2 2.23579 -0.00012
baseage -0.93499  0.00015

Estimated individual (linear) trajectories in response (CD4 %) over time (days since initial visit) vary in
their slopes (CD4 % change over time) and intercepts (starting CD4 %). Here, we observe the extent to
which these coefficients vary between individuals with respect to treatment and age at baseline. Looking at
the estimates in Table 4 above, we see that the average intercept and slope across individuals, adjusting for
other covariates in the model, are approximately 28.03 and -0.009, respectively. Additionally, we may notice
that, on average, an individual’s intercept will be 2.236 units greater for individuals on treatment 2 compared
to those on treatment 1 (reference group). Similarly, those on treatment 2 have slopes that are generally



0.000119 lower than those for treatment 1. This suggests that although CD4 % decreases (by very little)
over time for all individuals, it decreases slightly more rapidly for individuals on treatment 2 (adjusting for
other covariates and not accounting for additional predictors). Moreover, we see that for each unit increase
in baseline age, individual intercepts will decrease by a factor of 0.935 and slopes will increase by a factor of
0.000148. These findings validate the observations made from the plotted sample of individual trajectories
from parts (b) and (c).

Question 2:

a. Write down a model using multilevel notation for predicting CD4 percentage as a function of time
with varying intercepts across children. Fit the model (if working in R use the 1mer () function) and
interpret the coefficient for time.

b. Extend the model in (a) to include treatment and age at baseline as predictors. Write down the model
using multilevel notation. Fit the model and interpret the coefficients on time, treatment, and age at
baseline.

c. Investigate the change in partial pooling from (a) to (b) both graphically and numerically. Compare
the results in (b) to those obtained in part (c).
Solution
a. Predicting CD4 percentage as a function of time with varying intercepts across children.
Multilevel Model 1:
lmer (CD4PCT ~ time + (1|id), data=cd4_group)

Yij = Boj + B1Ti; + €5
Y;; ~ N(Boj + B1Tij,62)
Boj ~ N(p, 65)

Where Yj; is the predicted outcome for the 4™ individual on their i*" visit/observation;
Boj is the random (subject-specific) intercept (initial CD4 percentage); and f$ is fixed

slope for time (7;;) accross individuals.
51 = —0.00824
~ A2 N o
f=24.98, 6% =131.37, 65 =53.95

Interpretation: A coefficient of -0.00824 for the time predictor, indicates that CD4
percentage declines at an average rate of 0.00824 per unit increase in time across
individuals. Thus, according to this model, we can expect individuals to display (on
average) slowly decreasing linear trends in CD4 percentage over time (in days since
their first visit).

b. Predicting CD4 percentage as a function of time, treatment, and baseline age, with varying intercepts
across children.



Multilevel Model 2:
lmer (CDAPCT ~ time + trt + baseage + (1]|id), data=cd4_group)

Yij = Boj + BiTij + Ba X572 + B3 X%
Yij ~ N(Boj + B1Tij + B2 X132 + B3 X[778°, 62)
Boj ~ N(f1,63)

Where 5 and B3 are the fixed slope coefficients for treatment (Xf;tzz) and baseline

age (lej'age), respectively, and all else is as previously stated. Note that the binary
coeflicient for treatment assumes treatment 1 is the reference group.

B1 = —0.00814, By = 1.4066, B3 = —0.9488

fi =27.54, 6% =127.23, 65 = 53.97

Interpretation: Both (§; and (3, like 8, for time, can be seen independently as
the average effects of treatment and age at baseline on the primary outcome (CD4
percentage), adjusting for other model covariates. That is, according to this model, the
average effect of treatment on CD4 percentage is an additional 1.4066 units higher for
individuals on treatment 2 compared to those on treatment 1, adjusting for time and
age at baseline. Similarly, the average effect of baseline age on the response, adjusting
for time and treatment, is an approximate decrease of 0.9488 units for each unit increase
in baseline age.

c. Comparing changes in partial pooling from multilevel model 1 (in part (a)) to 2 (in part (b)).

Numerically:

Table 5: Individual Random Intercepts, Residuals, and Standard Errors (SE)

Multilevel Model 1 Multilevel Model 2
ID Intercept Residual SE Intercept Residual SE

1 21.7087  -3.2722 3.1576 25.3043 -2.2314  3.1544
2 5.0679 -19.9129 4.7306 7.2533  -20.2823 4.7185
3 33.7530 8.7722  2.6981 39.3322  11.7965 2.6963
4 30.4321 5.4512  2.9009 32.6090 5.0733  2.8985
5 18.6202 -6.3607  6.1841 19.8775 -7.6582  6.1560
6 28.0680 3.0872  2.9009 29.4784 1.9428 2.8985
7
8
9
0

30.5691 5.5883  2.6981 35.1170 7.5813  2.6963
31.4998 6.5190  2.9009 39.2148  11.6791 2.8985

8.2800 -16.7008 2.6981 9.8420 -17.6936 2.6963
19.3087  -5.6722  2.9009 23.2388 -4.2968  2.8985

Table 6: Fixed Effects

Multilevel Model Intercept Intercept SE Time Slope Time Slope SE

1 24.9808 0.8191 -0.0082 0.0014
2 27.5356 1.5890 -0.0081 0.0014




Table 7: Group-Level and Individual-Level Variabilities

Multilevel Model Group-Level Variability Individual-Level Variability

1 131.37 53.95
2 127.23 53.97

Graphically:

Figure 8: Observed vs. Predicted Trajectories of CD4 %
First 5/10 Randomly Selected Individuals
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Evidently, there is very little change in partial pooling from multilevel model 1 to multilevel model
2. However, given the decreased group-level variance in the second model, it is safe to assume
that age and treatment explain at least some of the variation between individuals in the data,
and hence, this model provides a slightly better fit.

Question 3:

a. Use the model fit from Question 2(b) to simulate predicted CD4 percentages for each child in the
dataset at a hypothetical next time point.

b. Use the same model fit to simulate predicted CD4 percentages at each of the time periods for a new
child who was 4 years old at baseline.
Solution

a. Given the variability in time between individuals, we appeal to the following metric to generate
appropriate “next” time points.

Metric:

1. For individuals with n = 1,2, ..., 7 different time points (observations), calculate the mean
time (in days since the first visit) for the first, second, third, etc. observations.

n=1: 1

n=2: 1 139

n=3: 1 132 287

n=4: 1 130 261 394

n=5: 1 119 218 330 461
n=6: 1 104 198 287 379 486

n=7: 1 87 174 262 351 439 525

2. Aside from the first case (n = 1), find the average distance accross time points.

n=2: 138 -> mean=138
n=3: 131 155 -> mean=143
n=4: 129 131 133 -> mean=138
n=5: 118 99 112 131 -> mean=138
n=6: 103 94 89 92 107 -> mean=138
n=7: 86 87 88 89 88 86 -> mean=138

3. While individuals with a single observation will have a “next” time point equal to the sum
of their original time and 140 (to give 141), the remaining individuals’ “next” time value
will be the sum of their last (and maximum) time and their group’s (in terms of number of
observations) corresponding mean time point difference.

Having implemented this metric to obtain a “next” time point for each individual, we compile the
data frame given by Table 8 (only showing the first 10 individuals/rows), from which we apply
the fit from multilevel model 2 to get the predicted and simulated CD4 percentages shown in the
last two columns, as follows.

fixed effects:
time: -0.008135
trt2: 1.406590
baseage: -0.948838

10



group-level variability: individual-level variability:
sigma2: 127.23 53.97
sigma: 11.28 7.347

Model Predictions:

for (i in 1:length(id)){
pred[i] <- rand_int[i] - 0.008135%new_time[i] + 1.406590*trt2[i] - 0.948838xbaseage[il
}

Simulated Model Predictions:

for (i in 1:length(id)){
sim_pred[i] <- mean(rnorm(1000,
rand_int[i] -
0.008135*new_time[i] +
1.406590*trt2[i] -
0.948838*baseage[i],
sigma.hat (mm2) $sigma$data))

Table 8: Individual New Time Points, Covariate Values, and Predicted/Simulated Responses

id rand_int new_time trt2 baseage pred sim_ pred

1 25.3043 824 0 3.9100 14.8911 15.0962

2 7.2533 217 1 3.5650 3.5120 3.0055

3 39.3322 718 0 6.1242  27.6804 27.3153

4 32.6090 532 0 2.3025 26.0965 25.9364

5 19.8775 141 0 0.6542 18.1097 17.9709

6 29.4784 658 1 2.9183 22.7632 22.8452

7 35.1170 620 1 6.4425  25.3670 25.2635

8 39.2148 658 0 8.5583  25.7415 25.4635

9 9.8420 606 1 3.0583 3.4169 3.7943

10 23.2388 574 1 5.7383 14.5312 14.3891

Figure 9.1: Individual Trajectories with Original Time Points Figure 9.2: Individual Trajectories with New Time Points
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Figure 10: Prediction for First 3 Individuals with New Time Point
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b. Under the same model (multilevel model 2), we simulate predicted CD4 percentages at 7 different time
periods for a new child whose baseline age was set to 4 years. Using the mean times for those with 7
observations, we obtain the following:

time points: 1 87 174 262 351 439 525
## Simulating Predictions for New Individual with 7 Time Points

beta0 <- fixef (mm2) [" (Intercept)"] #int_coef <- 27.53565
betal <- fixef (mm2) ["time"] # time_coef <- -0.008135

beta2 <- fixef(mm2) ["trt2"] # trt2 coef <- 1.406590

beta3 <- fixef(mm2) ["baseage"] # baseage_coef <- -0.948838

sigma_betalj <- sigma.hat(mm2)$sigma$id # group-level standard deviation
sigma_y_hat <- sigma.hat(mm2)$sigma$data # individual-level standard deviation

# random intercepts for mew individual
betal0j <- rnorm(1000, betal, sigma_betalj)

# matriz with random intercepts & fized slopes
rand_coefs_mat <- as.matrix(cbind(betaO+betalj, betal, beta2, beta3))

y_trtl_list <- c() # treatment 1

y_trt2_list <- c() # treatment 2

for (i in id9$time){
x_trtl <- c(1, i, 0, 4)
X_trt2 <- c(1, i, 1, 4)
y_trtl <- rnorm(1000, rand_coefs_mat %*} x_trtl, sigma_y_hat)
y_trt2 <- rnorm(1000, rand_coefs_mat %*} x_trt2, sigma_y_hat)
y_trtl_list <- c(y_trtl_list, y_trtl)
y_trt2_list <- c(y_trt2_list, y_trt2)

12



Figure 11.1: Predictions for New Individual with 7 Time Points
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Code

# Importing "cd4" Data
cd4 <- read.csv("/Users/antonellabasso/Desktop/PHP2517/DATA/cd4.csv")

## Descriptive Statistics

nrow(cd4) # 1055 observations
apply(cd4, 2, function(x) length(unique(x))) # 245 individuals

# missing data

cd4_na <- apply(cd4, 2, function(x) sum(is.na(x))) # for all columns
cd4_na[cd4_na '= 0] # 1 missing CD4 %, 95 missing CD$ counts

cd4 [which(is.na(cd4$CD4PCT)), 1 # 1 individual missing outcome of interest (4d=83)
cd4 [which(cd4$id==83), 1]

# removing observation with missing outcome of interest
cd4 <- cd4[-348, ]

# 1d numbers not in range 1-254
not_id <- c(Q)
for(i in 1:254){
if (i %in’% unique(cd4$id)==FALSE){
not_id <- c(not_id, i)
}
}

# number of obserwvations for each individual
obs_id <- as.data.frame(table(cd4$id)) %>% rename("id"=Varl, "observations"=Freq)
unique(obs_id$count) # each had 1, 2, 3, 4, 5, 6, or 7 visits/observations

# factorizing categorical wvariables
cd4$id <- as.factor(cd4$id)
cd4$trt <- as.factor(cd4$trt)

# grouping by observation count
cd4_group <- full_join(cd4, obs_id)

# descriptive statistics wrt CD4 J by visit count (group)
obs_ds <- cd4_group %>%
group_by (observations) %>%
summarise(count=n(),
mean=mean (CD4PCT) ,
var=var (CD4PCT)) %>%
mutate(num individuals=count/observations)

# descriptive statistics wrt CD4 J by treatment group
trt_ind <- cd4_group %>% group_by(id, trt) %>% summarise(n()) %>%
group_by(trt) %>% summarise(count=n()) #trti=126, trt2=119
trt_ds <- cd4_group %>} group_by(trt) %>}, summarise(count=n(),
mean=mean (CD4PCT) ,
var=var (CD4PCT))
trt_ds$num_individuals <- trt_ind$count

14



## EDA Tables

# descriptive statistics of primary outcome by treatment group
dstatsl <- data.frame(trt=trt_ds$trt, num individuals=trt_ds$num_individuals,
mean=trt_ds$mean, var=trt_ds$var) %>%
rename ("Treatment Group"=trt, "Individuals"=num_individuals,
"Mean CD4 %"=mean, "Variance CD4 %"=var)
# descriptive statistics of primary outcome by observation count
dstats2 <- data.frame(observations=obs_ds$observations, num individuals=obs_ds$num_individuals,
mean=obs_ds$mean, var=obs_ds$var) %>%
rename ("Observation Count'"=observations, "Individuals'=num_individuals,
"Mean CD4 %"=mean, "Variance CD4 %"=var)

## EDA Plots

# distribution of CD4 %

hist (cd4$CD4PCT,
main="Figure 1: Distribution of CD4 %",
xlab="CD4 %",

col="1lightblue")

# individual averages
mean_ind <- cd4 %>% group_by(id) %>/ summarise(mean=mean(CD4PCT), .groups="keep")
scatterplot <- ggplot(mean_ind, aes(x=as.numeric(id), y=mean)) +
geom_point (color="purple") +
labs(title="Mean Individual CD4 Percentages",
x="ID",
y="Mean CD4 %")

# CD4 J by treatment group
violinplot <- ggplot(cd4, aes(x=trt, y=CD4PCT, fill=trt)) +
geom_violin() +
labs(title="Figure 2: CD4 Percentages by Treatment Group",
x="Treatment",
y="CD4 %",
fill="Treatment")

# CD4 J by age (rounded)
mean_age <- cd4 %>} group_by(age=round(visage), trt) %>% summarise(mean=mean(CD4PCT), .groups="keep")
lineplot <- ggplot(mean_age, aes(x=age, y=mean, color=trt)) +
geom_point() +
geom_line() +
labs(title="Figure 3: Mean CD4 Percentage by Age and Treatment Group",
x="Age",
y="Mean CD4 %",
color="Treatment")

# CD4 % by number of observations
boxplot <- ggplot(cd4_group, aes(x=as.factor(observations), y=CD4PCT, color=as.factor(observations))) +
geom_boxplot() +
labs(title="Figure 4: CD4 Percentages by Observation Count",
x="0bservation Count",
y="CD4 %",
color="0Observation Count")

15



# mean CD4 J by observation count and treatment
mean_obs_trt <- cd4_group %>/, group_by(observations, trt) %>/, summarise(mean=mean(CD4PCT), .groups="kee;
barplot <- ggplot(cd4_group, aes(x=as.factor(observations), y=CD4PCT, fill=trt)) +
geom_bar(position="dodge", stat="identity") +
labs(title="Figure 5: Mean CD4 Percentage by Observation Count and Treatment Group",
x="0bservation Count",
y="CD4 %",
fill="Treatment")

## Individual Trajectories of CD4 J, Over Time

# 10 randomly selected individuals

set.seed (47)

randsample_10 <- sample(unique(cd4_group$id), 10, replace=FALSE)
randsample_10_df <- cd4_group[which(cd4_group$id %inj, randsample_10), ]

# individual trajectories of CD4 J (on the square Toot scale)
# set y=sqrt(CD4PCT) to change wvalues to sqrt()
randsample_10_trajectories <- ggplot(randsample_10_df,
aes(x=time, y=CD4PCT, color=id)) +
geom_point () +
geom_line() +
scale_y_sqrt() +
labs(title="Figure 6: Individual CD4 Percentages (Square Root Scale) Over Time",
x="Time (in Days) After the First Visit",
y="CD4 7 (Square Root Scale)",
color="ID")

# individual trajectories of CD4 J (NOT sqrt scale)
ggplot(randsample_10_df, aes(x=time, y=CD4PCT, color=id)) +
geom_point () +
geom_line() +
labs(title="Individual CD4 Percentages Over Time",
x="Time (in Days) After the First Visit",
y="CD4 %",
color="ID")

## Individual Linear Trajectories of CD4 J, Over Time

# individual linear trajectories of CD4 7 (lm)
randsample_10_lms <- ggplot(randsample_10_df, aes(x=time, y=CD4PCT, color=id)) +
geom_point() +
geom_smooth(method="1m", se=FALSE)+
labs(title="Figure 7: Estimated Individual Linear Trajectories of CD4 Percentage",
x="Time (in Days) After the First Visit",
y="CD4 %",
color="ID")

## Linear Model:
# Step 1: estimating intercepts and time slopes separately for each individual
id <- unique(cd4_group$id) # unique ids

individuals_lm <- as.data.frame(id) # data frame for id & corresponding coefs
intercept <- c()

16



slope_time <- c()

for (i in id){
b0 <- coef (1lm(CD4PCT ~ time, data=cd4_group[which(cd4_group$id==i), 1)) [1] # intercept estimates
bt <- coef (lm(CD4PCT ~ time, data=cd4_group[which(cd4_group$id==i), 1)) [2] # time slope estimates
intercept <- c(intercept, b0)
slope_time <- c(slope_time, bt)

}

individuals_lm$intercept <- as.vector(intercept)

individuals_lm$slope_time <- as.vector(slope_time)

individuals_1lm %>% rename("ID"=id, "Intercept'=intercept, "Slope'"=slope_time)

# Step 2: estimating variation between individual time trends given treatment and baseline age
cd4_ml <- full_join(cd4_group, individuals_1m)

Im(intercept ~ trt + baseage, data=cd4_ml) # variation between individual time intercepts
Im(slope_time ~ trt + baseage, data=cd4_ml) # wvariation between individual time slopes

## Multilevel Model 1

mml <- 1mer (CD4PCT ~ time + (1|id), data=cd4_group) # partial pooling
summary (mm1)

#fixzef(mm1) # fized effects (time)

#ranef(mm1) # random effect estimates (residuals) <- ranef(mml)=resid(mm1)
#coef(mml) # coefficients (random intercepts and fized slope for time)

mean_cd4pct <- c() # individual CD4 J means
for (i in id){
mean <- coef(lm(CD4PCT ~ 1, data=cd4_group[which(cd4_group$id==i), 1)) # individual means (no pooling
mean_cd4pct <- c(mean_cd4pct, mean)
}
individuals_mml <- as.data.frame(cbind(id=individuals_lm$id, # individual %ds
mean_cd4pct=as.vector (mean_cddpct), # individual means
intercept_Im=individuals_lm$intercept, # pp intercept - Ilm
time_lm=individuals_lm$slope_time, # pp slope - Im
intercept_mm=coef (mm1)$id[," (Intercept)"], # pp intercept - lmer
time_mm=coef (mm1)$id[,"time"], # pp slope - lmer
intercept_resid=ranef (mm1)$id[," (Intercept)"])) # residuals

## Multilevel Model 2

mm2 <- 1lmer (CD4PCT ~ time + trt + baseage + (1|id), data=cd4_group) # partial pooling
summary (mm2) # - residual wvariance for individuals has decreased

#fizef (mm2) # fized effects (time, trt, baseage)

#ranef (mm2) # random effect estimates (restduals)

#coef(mm2) # coefficients (random intercepts and fized slopes)

# getting coefficient estimates

mm2_coefs <- as.data.frame(cbind(id=individuals_1m$id, # individual %ids
mean_cd4pct=as.vector(mean_cd4pct), # individual means
intercept=coef (mm2)$id[," (Intercept)"], # random intercepts
residual=ranef (mm2)$id[," (Intercept)"], # residuals
time=coef (mm2)$id[,"time"], # fized time slope
treatment=coef (mm2)$id[,"trt2"], # fized treatment slope
baseage=coef (mm2)$id[, "baseage"])) # fized baseage slope
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## Tables (Comparing Multilevel Models 1 and 2)

# comparing residual, (time) slope, and intercept estimates to those obtained in part (a)
individuals_mm2 <- individuals mmi[, -c(2, 3, 4)] %>%
mutate (intercept _mm2=coef (mm2)$id[, "(Intercept)"],
time mm2=coef (mm2)$id[, "time"],
intercept_resid2=ranef (mm2)$id[, " (Intercept)"])

# comparing only residual and intercept estimates
mmivmm2_randef <- individuals mm2[, -c(3, 6)] %>%
rename ("ID"=id,
"Intercept (Model 1)"=intercept_mm,
"Residual (Model 1)"=intercept_resid,
"Intercept (Model 2)"=intercept_mm2,
"Residual (Model 2)"=intercept_resid2)

# model 1 random intercepts, restduals, and SE

mml_randef <- mmlvmm2_randef[, -c(4, 5)] %>%
mutate (se=se.ranef (mm1)$id[, "(Intercept)"]) %>%
rename ("Intercept"=2, "Residual"=3, "SE"=se)

# model 2 random intercepts, restduals, and SE

mm2_randef <- mmlvmm2 randef[, -c(2, 3)1 %>Y%
mutate (se=se.ranef (mm2)$id[, "(Intercept)"]) %>%
rename ("Intercept"=2, "Residual"=3, "SE"=se)

# comparing fized effects (slopes for time)
mms <- c(1, 2)
ints <- c(24.980845, 27.535647)
ints_se <- ¢(0.819118, 1.588992)
slopes <- c(-0.008236, -0.008135)
slopes_se <- c¢(0.001409, 0.001409)
mmlvmm2_fixedef <- as.data.frame(cbind(mms, ints, ints_se, slopes, slopes_se)) %>%
rename ("Multilevel Model'"=mms,
"Intercept"=ints,
"Intercept SE"=ints_se,
"Time Slope'"=slopes,
"Time Slope SE"=slopes_se)

# comparing group-level and individual-level wvariabilities
#sigma.hat (mm2) $sigma$id # group-level standard deviation
#sigma.hat (mm2) $sigma$data # individual-level standard deviation
bet_ind <- ¢(131.37, 127.23)
with_ind <- c(53.95, 53.97)
mmlvmm2_vars <- as.data.frame(cbind(mms, bet_ind, with_ind)) %>%
rename ("Multilevel Model'"=mms,
"Group-Level Variability"=bet_ind,
"Individual-Level Variability"=with_ind)

## Observed vs. Predicted/Fitted Values
pred_mml <- as.vector(fitted(mml)) # model 1

pred_mm2 <- as.vector(fitted(mm2)) # model 2
obsvpred <- as.data.frame(cbind(id=cd4_group$id,
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time=cd4_group$time,
observed=cd4_group$CD4PCT,
pred_mml=pred_mmil,
pred_mm2=pred_mm2) )

# observed vs. predicted/fitted values for 10 individuals
randsample_10_obsvpred <- obsvpred[which(obsvpred$id %in), randsample_10), ]
randsample_10_obsvpred2 <- pivot_longer (randsample_10_obsvpred, c(3, 4, 5), names_to="value_type")

# plot for first &5 individuals
obsvpred_plotl <- ggplot(randsample_10_obsvpred2[which(randsample_10_obsvpred2$id<=151), ],
aes(x=time, y=value, color=as.factor(id))) +
geom_point (aes(shape=value_type)) +
geom_line(aes(lty=value_type)) +
scale_y_sqrt() +
labs(title="Figure 8: Observed vs. Predicted Trajectories of CD4 %",
subtitle="First 5/10 Randomly Selected Individuals",
x="Time (in Days) After the First Visit",
y="CD4 %",
color="1D",
shape="Value Type",
lty="Value Type")

# plot for remaining 5 individuals
obsvpred_plot2 <- ggplot(randsample_10_obsvpred2[which(randsample_10_obsvpred2$id>=151), 1,
aes(x=time, y=value, color=as.factor(id))) +
geom_point (aes(shape=value_type)) +
geom_line(aes(lty=value_type)) +
scale_y_sqrt() +
labs(title=" ",
subtitle="Last 10/10 Randomly Selected Individuals",
x="Time (in Days) After the First Visit",
y="CD4 %",
color="ID",
shape="Value Type",
1lty="Value Type")

## Metric for New Time Points

# unique times in order
time_vec <- as.vector(unique(cd4_group$time))
time_ord <- c(1, rep(0, length(time_vec)-1))
time_df <- data.frame(time_vec, time_ord)
for (i in 2:length(time_vec)){
time_df$time_ord[i] <- min(time_df [which(time_df$time_vec>time_df$time_ord[i-1]1), 1])
}

# average times across individuals with the same number of observations
for (i in 1:7){

obs <- cd4_group[which(cd4_group$observations==i),]

row.names (obs) <- 1:nrow(obs)

obs_avgs <- c()
for (j in 1:i){
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pattern <- seq(j, nrow(obs), i)
avg <- round(mean(obs[which(as.numeric(row.names(obs)) %inj, pattern), 41))
obs_avgs <- c(obs_avgs, avg)
}
print (obs_avgs)
}

# time tincreases (changes between time points) for each group individuals with the same number of obser
diff2 <- c(138) # mean=138

diff3 <- c(131, 155) # mean=143

diffd <- c(129, 131, 133) # mean=131

diff5 <- c(118, 99, 112, 131) # mean=115

diffé <- c(103, 94, 89, 92, 107) # mean=97

diff7 <- c(86, 87, 88, 89, 88, 86) # mean=87

# metric:

# new added times = individual's maxz time value + mean time increase for corresponding group
mean(diff2) # 138

mean(diff3) # 143

mean(diff4) # 131

mean(diffb) # 115

mean(diffé) # 97

mean(diff7) # 87

# new time point for individuals with 1 observation = 1 + 140 = 141

## Getting New Times (based on metric)

id <- individuals_lm$id

max_times <- rep(0, length(id))

new_times <- rep(0, length(id))

new_times_df <- data.frame(id, max_times, new_times)

for (i in id){
new_times_df [which(new_times_df$id==1i), ]$max_times <- max(cd4_group[which(cd4_group$id==i), "time"])

}

for (i in 1:length(id)){

if (cd4_group[which(cd4_group$id==new_times_df[i, "id"]), "observations"]==1){
new_times_df$new_times[i] <- new_times_df$max_times[i] + 140

} else if (cd4_groupl[which(cd4_group$id==new_times_df[i, "id"]), "observations"]==2){
new_times_df$new_times[i] <- new_times_df$max_times[i] + 138

} else if (cd4_group[which(cd4_group$id==new_times_df[i, "id"]), "observations"]==3){
new_times_df$new_times[i] <- new_times_df$max_times[i] + 143

} else if (cd4_groupl[which(cd4_group$id==new_times_df[i, "id"]), "observations"]==4){
new_times_df$new_times[i] <- new_times_df$max_times[i] + 131

} else if (cd4_group[which(cd4_group$id==new_times_df[i, "id"]), "observations"]==5){
new_times_df$new_times[i] <- new_times_df$max_times[i] + 115

} else if (cd4_group[which(cd4_group$id==new_times_df[i, "id"]), "observations"]==6){
new_times_df$new_times[i] <- new_times_df$max_times[i] + 97

} else if (cd4_groupl[which(cd4_group$id==new_times_df[i, "id"]), "observations"]==7){
new_times_df$new_times[i] <- new_times_df$max_times[i] + 87
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## Obtaining Predicted Values for New Time Points (based on multilevel model 2 fit)

# covariate wvalues for each individual
trt <- rep(0, length(id))
baseage <- rep(0, length(id))
mm2_new_preds <- new_times_df[, c(1, 3)1 %>%
mutate( trt,
baseage,
coef (mm2)$id[, "(Intercept)"])

for (i in id){
mm2_new_preds [which(mm2_new_preds$id==i), 1$trt <-
mean (as.numeric(cd4_group[which(cd4_group$id==i), "trt"]))
mm2_new_preds [which(mm2_new_preds$id==1i), ]$baseage <-
mean(cd4_group [which(cd4_group$id==i), "baseage"])
}

mm2_new_preds$trt2 <- (mm2_new_preds$trt)-1

# predicted CD4 J) values for new time points based on model 2 fit
time_coef <- -0.008135

trt2_coef <- 1.406590

baseage_coef <- -0.948838

# betal <- fizef(mm2)["time"]

# beta2 <- fizef(mm2) ["trt2"]

# beta3 <- fizef(mm2)["baseage"]

pred <- rep(0, length(id))

mm2_new_preds <- mm2_new_preds %>% mutate( pred)

for (i in 1:length(id)){
mm2_new_preds$pred[i] <-
mm2_new_preds$rand_int[i] +
mm2_new_preds$new_times[i] *time_coef +
mm2_new_preds$trt2[i] *trt2_coef +
mm2_new_preds$baseage [i] *baseage_coef

}

## Simulated Predictions for New Time Points
set.seed(47)

sim_preds <- c()
for (i in 1:nrow(mm2_new_preds)){
preds <- rnorm(1000,
mm2_new_preds$rand_int[i] -
0.008135*mm2_new_preds$new_time[i] +
1.406590*mm2_new_preds$trt2[i] -
0.948838*mm2_new_preds$baseage[i],
sigma.hat (mm2) $sigma$data)
sim_preds[i] <- mean(preds)

}

## Comparing Individual Trajectories with 0ld/New Time Points

randsample_10_preds <- randsample_10_df[, c(1, 4, 5)]
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for (i in randsample_10){
new_row <- c(i,

mm2_new_preds [which(mm2_new_preds$id==i), ]$new_times,
round (mm2_new_preds [which(mm2_new_preds$id==i), ]$pred, 1))

randsample_10_preds <- rbind(randsample_10_preds, new_row)

}

randsample_10_preds <- randsample_10_preds %>%
group_by(id) %>%

arrange ( TRUE)
randsample_10_preds
rand_10_new_predsl <- ggplot(randsample_10_df, aes(x=time, y=CD4PCT, id)) +

geom_point() +
geom_line() +
scale_y_sqrt() +
x1im(0, 900) +

labs(

"Figure 9.1: Individual Trajectories with Original Time Points",

"Time (in Days) After the First Visit",
"CD4 % (Square Root Scale)",

" IDH)

rand_10_new_preds2 <- ggplot(randsample_10_preds,

aes(x=as.numeric(time), as.numeric (CD4PCT),

geom_point () +
geom_line() +
scale_y_sqrt() +
x1im(0, 900) +

labs(

"Figure 9.2: Individual Trajectories with New Time Points",

"Time (in Days) After the First Visit",
"CD4 % (Square Root Scale)",

n IDH)

## Plotting Prediction Distributions for First 3 Individuals

set.seed (47)

sim_preds_idl <- rnorm(1000,

mm2_new_preds$rand_int[1] -
0.008135*mm2_new_preds$new_time[1] +
1.406590*mm2_new_preds$trt2[1] -
0.948838*mm2_new_preds$baseage[1],

sigma.hat (mm2) $sigma$data)

sim_preds_id2 <- rnorm(1000,

mm2_new_preds$rand_int [2] -
0.008135*mm2_new_preds$new_time[2] +
1.406590*mm2_new_preds$trt2[2] -
0.948838*mm2_new_preds$baseage[2],

sigma.hat (mm2) $sigma$data)

sim_preds_id3 <- rnorm(1000,

mm2_new_preds$rand_int [3] -
0.008135*mm2_new_preds$new_time[3] +
1.406590*mm2_new_preds$trt2[3] -
0.948838*mm2_new_preds$baseage[3],
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sigma.hat (mm2) $sigma$data)

sim_preds_ids <- boxplot(sim_preds_idl, sim_preds_id2, sim_preds_id3,
names = c("ID=1", "ID=2", "ID=3"),
ylab="CD4 %",
main="Figure 10: Prediction for First 3 Individuals with New Time Point",
col="orange")

#sim_preds_ids$stats (boxplot stats)

## Simulating Predictions for New Individual with 7 Time Points
set.seed (47)

id9 <- as.data.frame(cbind(id=rep(9, 7),
time=c(1, 87, 174, 262, 351, 439, 525),
trt2=rep(1, 7),
baseage=rep(4, 7)))

betal <- fixef (mm2) ["(Intercept)"] #int_coef <- 27.53565
betal <- fixef(mm2) ["time"] # time_coef <- -0.008135
beta2 <- fixef(mm2) ["trt2"] # trt2 coef <- 1.406590

beta3 <- fixef (mm2) ["baseage"] # baseage_coef <- -0.948838

sigma_betalj <- sigma.hat(mm2)$sigma$id # group-level standard deviation
sigma_y_hat <- sigma.hat(mm2)$sigma$data # individual-level standard deviation

# random intercepts for new individual
beta0j <- rnorm(1000, betal, sigma_betalj)

# matriz with random intercepts & fized slopes
rand_coefs_mat <- as.matrix(cbind(betaO+betalj, betal, beta2, beta3))

y_trtl_list <- c¢() # treatment 1

y_trt2_list <- c() # treatment 2

for (i in id9$time){
x_trtl <- c(1, i, 0, 4)
x_trt2 <- c(1, i, 1, 4)
y_trtl <- rnorm(1000, rand_coefs_mat %*% x_trtl, sigma_y_hat)
y_trt2 <- rnorm(1000, rand_coefs_mat %*}% x_trt2, sigma_y_hat)
y_trtl_list <- c(y_trtl_list, y_trtl)
y_trt2_list <- c(y_trt2_list, y_trt2)

¥

## Plotting Distributions for Simulated Predictions for New Individual (with 7 Time Points)

# distributions for each time point for treatment 1

boxplot(y_trtl_list[1:1000],
y_trt1_1list[1001:2000],
y_trtl_1ist[2001:3000],
y_trtl_list[3001:4000],
y_trtl_list[4001:5000],
y_trtl_list[5001:6000],
y_trtl_list[6001:7000],
names=c("1", "2",6 "3",6 "4, nEv o onet, w7ty
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xlab="Treatment 1",

ylab="CD4 %",

main="Figure 11.1: Predictions for New Individual with 7 Time Points",
sub=" ",

border="red",

col="orange")

# distributions for each time point for treatment 2
boxplot (y_trt2_list[1:1000],
y_trt2_1ist[1001:2000],
y_trt2_list[2001:3000],
y_trt2_list[3001:4000],
y_trt2_list[4001:5000],
y_trt2_list[5001:6000],
y_trt2_1ist[6001:7000],
names=c("1", "2", "3", "4n  ngn_ ongn o ongny
xlab="Treatment 2",
ylab="CD4 %",
main="Figure 11.2: Predictions for New Individual with 7 Time Points",
sub="Time Point",
border="red",
col="orange")
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